Runtime Metric Meets Developer

Augmenting Source Code with Runtime Information to Make Programs Live (Demonstration)

Jurgen Cito
University of Zurich
Zurich, Switzerland

cito@ifi.uzh.ch

ABSTRACT

For software developers, source code is the static blueprint that is
transformed into running behavior. In modern applications, this
behavior is often facilitated through distributed systems. Thus,
behavior developers observe on their machine is usually not the
same as it is perceived by end users. We propose a system where
source code is mapped with information gathered at runtime to
make programs feel “alive". We implemented a system that maps
runtime performance to source code artifacts. In this demo, we
show how performance problems can be prevented in different
scenarios.

KEYWORDS

Programming experience; Software Analytics; Performance engi-
neering

ACM Reference format:

Jurgen Cito. 2017. Runtime Metric Meets Developer. In Proceedings of Pro-
gramming Experience Workshop, Brussels, Belgium, April 4, 2017 (PX/17),
2 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 AUGMENTING SOURCE CODE WITH
RUNTIME INFORMATION

As software developers, we build functionality based on abstractions
that manifest themselves as structural text we call source code
of programs. In this demo, we want to entertain a conservative
idea of live programming: Mapping the structural text we write
with their execution footprint gives developers a feel of how their
programs are perceived “in the wild". It makes program code, that is
usually static blueprints, feel alive. In the following, we describe the
conceptual model of that idea and an implementation that focuses
of software performance.

1.1 Conceptual Model

We propose a conceptual framework (Figure 1) that models runtime
information together with source code to achieve tighter integration
of runtime aspects in the software development workflow.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PX/17, Brussels, Belgium

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-x-xxxx-xxxx-X/YY/MM...$15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

Abstract Syntax Tree (AST)

Distributed Runtime Traces

[261067201521205.0]
[261067201521215.0]

Performance Augmented
Source Code

Prediction through
Impact Analysis

Feedback Mapping

Runtime Metric Annotated AST

*%q

Figure 1: Conceptual Framework for the proposed approach.
Nodes of source code, represented as a simplified Abstract
Syntax Tree (AST), are annotated with runtime performance
metrics.

Theory. The basic theory underlying the conceptual framework
is that static information available while working on maintenance
tasks in software development does not suffice to properly diagnose
problems that occur at runtime. The conjecture then is: Augmenting
source code with dynamic information from the runtime yields
enough information to the software developer to (1) make informed,
data-driven decisions on how to perform code changes, (2) perceive
code as it is experienced by its users.

Feedback Mapping. In an initial step, the abstract syntax tree
(AST) of the source code is combined with the dynamic view of
runtime information in a process called feedback mapping [2]. In the
IDE, this results in a performance augmented source code view, that
allows developers to examine their code artifacts annotated with
performance data from runtime traces from production. Examples
for such a mapping go from method calls with execution times,
usage statistics for features or collections with size distribution.

Impact Analysis. When working on maintenance tasks, software
developers often add or delete code. Nodes in the AST of newly
added code does not yet have runtime traces that can be mapped.
An impact analysis model designated for a specific purpose (e.g.,
performance prediction) is given the delta between the annotated
AST, with all its attached operational data, and the current AST
that include the new changes as parameters to infer new informa-
tion about the unknown nodes in the current AST. A prediction
through impact analysis gives early feedback and gives developers

PX/17, April 4, 2017, Brussels, Belgium

Jiirgen Cito

@Transactional(readOnly = true)

public List<StoryTO> retrieveleafStories(int projectId, StoryFilters filters) {
Project original = this.retrieve(projectld);

List<Story> leafStories = this.st The Method retrieve has been identified as critical.

The average execution time is: 98.723ms.

leafStories = storyFilterBusiness

List<StoryTO> leafStoriesWithRank

int rank = @;

for(Story leafStory : leafStories
StoryTO tmp = new StoryTO(leafStory);
tmp.setRank(rank++);

Set<Task> tasks = new HashSet<Task>();
for (Task task : tmp.getTasksQ)) {

TaskTO taskTO = new TaskTO(task);
long sum = @;

/7 : sum up minutes from taskTO.getHourEntries and store it in tasl

tasks.add(taskT0);

tmp.setTasks(tasks);

leafStoriesWithRank.add(tmp);
3

return leafStoriesWithRank;

@Transactional(readOnly = true)
public List<StoryTO> retrieveleafStories(int projectId, StoryFilters filters) {
Project original = this.retrieve(projectid);

List<Story> leafStories = this.storyRankBusiness.retrieveByRankingContext(original);

leafStories = storyFilterBusiness.filterStorylist(leafStories, filters);
List<StoryTO> leafStoriesWithRank = new Arraylist<StoryT0>();
int rank = 0;
for(Story leafStory : leafStories) {
StoryTO tmp = new StoryTO(leafStory);
tmp. setRank(rank++);

Set<Task> tasks = new HashSet<Task>();
for (Task task : tmp.getTasks()) {
TaskTO taskTO = n This loop has been identified as critical.

long sum = @; The average total time is: 468.0ms

/7 : sum up mi Average iterations: 6.0; average time per iteration: 78.0ms KTO.setEffortSpent
for(TaskHourEnt
(sum += B d‘ loop: 6.0*78.0ms

- Ty loop header: 0.0ms
} loop body: 78.0ms
taskT0.setEfforts loop: 78.0ms = 78.0ms

loop header: 0.0ms

tasks.add(taskT0) loop body: 78.0ms

getMinutesSpent: 78.0ms
}
tmp.setTasks(tasks); all Further Info
leafStoriesWithRank.add(tmp);

return leafStoriesWithRank;

(a) Displaying Operational Footprint

(b) Inferring the Performance of Newly-Written Code

Figure 2: Eclipse plugin PerformanceHat, an implementation of the conceptual framework of augmenting runtime informa-

tion to source code

an outlook to the future of their code changes prior to running the
application in production.

2 GOALS

Our approach follows three high-level goals:

(1) Operational Awareness: By integrating runtime aspects into
source code and, thus, into the development workflow, software
developers become more aware of the operational footprint of their
source code.

(2) Contextualization: Software developers struggle with incor-
porating runtime aspects, because information about operational
aspects (i.e., runtime metrics) is usually presented on the wrong
abstraction level (i.e., visualized in dashboards) [1]. Our approach
brings runtime metrics into the context of software development
tasks by being integrated into the change process.

(3) Prevention: By achieving operational awareness and contextu-
alization alone, we envision to already prevent introducing certain
classes of runtime problems. Through impact analysis where we
leverage lightweight, analytical models to provide inference for
code changes, we want to avoid additional problems from reaching
production.

3 PROOF-OF-CONCEPT IMPLEMENTATION

Based on the conceptual framework, we implemented a proof-of-
concept as an Eclipse IDE plugin for Java programs, that implements
the idea for software performance in cloud runtimes. Performance

information (i.e., execution times) is attached to method defini-
tion and method calls. Currently, adding method calls and loops
within a method body are supported for impact analysis and predic-
tion. Figure 2 provides a screenshot of the implementation, called
PerformanceHat.

4 DEMONSTRATION

In this demo, we explored the ways runtime information can aid the
software development process. We demonstrated the capabilities
of our implementation PerformanceHat on a case study application
(AgileFant?). We show how software developers can become more
aware of the performance of existing methods and can infer in-
formation about new methods through impact analysis. Figure 2
illustrates this process: (a) shows a method that is augmented with
runtime performance information, providing software developers
with an immediate sense of the method’s operational footprint, (b)
depicts how impact analysis propagates the information of newly
written code and infers the impact of these code changes.

REFERENCES

[1] Jurgen Cito, Philipp Leitner, Thomas Fritz, and Harald C. Gall. 2015. The Making
of Cloud Applications: An Empirical Study on Software Development for the
Cloud. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE). ACM, New York, NY, USA, 11.

[2] Jurgen Cito, Philipp Leitner, Harald C Gall, Aryan Dadashi, Anne Keller, and
Andreas Roth. 2015. Runtime Metric meets Developer - Building better Cloud
Applications using Feedback. In Proceedings of the 2015 ACM International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming & Software
(Onward! 2015).

Lhttp:/sealuzh.github.io/PerformanceHat/
Zhttps://www.agilefant.com/

http://sealuzh.github.io/PerformanceHat/
https://www.agilefant.com/

	Abstract
	1 Augmenting Source Code with Runtime Information
	1.1 Conceptual Model

	2 Goals
	3 Proof-of-Concept Implementation
	4 Demonstration
	References

