Shaping the Programming
Experiences of Students:

Reflections on a Course on Game
Design for Problem Solving

Steven L. Tanimoto
University of Washington

Paul G. Allen School of Computer Science and Engineering

Outline

Introduction

A Course on Games for Problem Solving

* Problem Formulation

* Wicked Problems

« Towards Standard Formats

 Liveness in Problem Solving Environments
« Design vs Problem Solving

* Other Issues

« Peer Critiques in the Programming Lab

« Concluding Thoughts

Outline

Introduction

A Course on Games for Problem Solving

* Problem Formulation

* Wicked Problems

« Towards Standard Formats

 Liveness in Problem Solving Environments
« Design vs Problem Solving

* Other Issues

« Peer Critiques in the Programming Lab

« Concluding Thoughts

Instructor's Objectives

 Clarify an interdisciplinary approach to problem
solving.
* Build on past work:

— Collaborative Design (2009, 2010, with T. Robison, B.
Johnson, and others)

— CoSolve (with Sandra Fan et al. 2012).
— Problem Formulation (with Rob Thompson, unpublished)

« Refine software that codifies a promising approach
to formulating and solving problems.

* Engage students in learning important content.

The Course

 First offering: Spring 2017 ("the spring offering")
« Second offering: Summer 2017 ("the EFS offering”)
— The U.W. Early Fall Start program
— Course flyer
— Calendar
— Student population and backgrounds
— Classical Theory of Problem Solving

Shaping Student Experiences

Students already have varied backgrounds in
computer programming.

Now we do programming “in context.” (serving a
separate end than just fluency: game creation).

Helps level the playing field, de-emphasizing the
primacy of coding fluency.

Offer new experiences to all...

Agile, Scrum, lterative design, User-centered
design

New libraries and coding frameworks.

Outline

* |ntroduction

« A Course on Games for Problem Solving
* Problem Formulation

* Wicked Problems

* Towards Standard Formats

 Liveness in Problem Solving Environments
« Design vs Problem Solving

* Other Issues

« Peer Critiques in the Programming Lab

« Concluding Thoughts

The Early Fall Start Program at U.W.

Get Ahead of the Pack

Are you ready for the University of Washington? Make a smaooth transition to the UW by

attending Early Fall Start, a special program for new students.

Make a Great Start

With Early Fall Start, you can enroll in a UW course about a month before autumn quarter

begins and get comfortable with college life.

EFS Program (cont.)

The Biology of Human Consciousness
CSI: Seattle
Experiencing the Arts

Fetal Origins of AdultDiseases: A Public Health
Perspective

Flight & Space Exploration
Food!

Four Great Moments in Classical China: History
& Philosophy Through Literature & Film

Game Design for Problem-Solving With Python
Iconic Seattle: A Diverse Home for the Arts

Icons of Place: Exploration Through Poetic
Thought

Indistinguishable From Magic: New Technologies,

Science Fiction & Us
Kids, Crime & Race: Juvenile Justice in America

Laws of Sex: Exploring Legal Issues About Sex,
Gender & Sexuality

Neurobiology of Critical Thinking: What Is
Reality?

Numbers & Reasons

Out of This World: Writing About Science Fiction

The Political Economy of Everything

Sagas of the Vikings: Outlaws & Poet-Warriors
Secret Codes & Online Security

Sensory Worlds & Behavior of Animals

The Sound of Seattle

STEM(M) in the Ancient World: Computers,
Robots, Neuroscience & Death Rays

Sustainable Energy Solutions for the 21st
Century: Science, Technology & Policy

This Is Your Brain on Drugs
Travel Writing for Travelers (Not Tourists)

Unraveling the Dark Universe With the Large
Hadron Collider

A World of Stories

Game Design for Problem Solving with Python

11

last updated: September 7, 2017.

Tuesday, August 22:
Course Introduction Wednesday, August 23:
Fython's basic data
objects; working with

lecture pdf

[Python | g

Friday, August 25:
Python's control
structures; defining
functions in Python

Thursday, August 24:

orking with numbers
in Python; lists in
Pﬂhon
[L)

I

Classical Theory of
Problem Solving

stnngs in F'g.rthon

LF basic data ~eading: LE more data

Reading: LP intro. Reading: LP basic data PO due at 5:00 Reading: GD Game
PO out Hes design intro: | P control
Problem sliuciures
solvin :
9 ednesday ‘;““t']‘lﬂ 30 Thursday, August 31:
th eory & hon class defi nmunsl ormutating Froblems ml Game structures
: lecture SLlile —lecture ndf ______J [ECiTe oot
| Classic Puzzles || and introduction to g F'mp;:; rl‘u{rj\?r?gs and
ML Reading' GD game
Game Reading: LP Python - Igt"_ : structures
lommuiaiion gmblems P2 due; P3 out

class definitions

design and

Tuesday, September 5:
[GQuiz 1 covering game
tructures] Introductio
to software
development with

Software Scrum
engineering e

F3 Milestone A due

Tuesday, September
12: [Quiz 3 on learning
curves, theory of
problem solving, and
wicked problems
Wicked Problem Cas
Study: Homelessness

lecture pdt

F3 Milestone C due

P1 due; P2 out
Wednesday, September

: = Thursday, September 7:
[6: The Prisoners] Featured guest: Maggie Friday, September &:

Dilemma and related

obstacles to problem Ryan (CSE

undergraduate program

Learning curves
lecture pdf

solving : !
advisor) [Quiz 2 Lab work
lecture pdf . : Lal _
P3A presentations of COVENng the pnsuner's REﬂdlﬂghwigsleamlng
game ideas [
Reading: GD Prisoners P3 Milestone B due
Dilemma

Medneeday Santambe . Friday, September 15:
13: Lab work Serum| - (14.terative design or| 102! presentations
Z dMes, lab work : N
presen a 10Ns Of game g Miestone 1 due eu_aluatmns
ideas F3 Milestone E due

last updated: September 7, 2017.

12

Student Population

» 25 incoming freshmen
» 5 female, 20 male

* 16 international students (from China,
India, Japan, Korea, Lebanon, Singapore)

* 9 domestic (US)

Prior Programming Experience

Amount of Experience Number (and
percentage)
None 3 (12%)
Up to about 1 month 6 (24%)
1 to 6 months 3 (12%)

More than 6 months 13 (52%)

Diversity of Programming EXp.

T
by LS L LN

If yvou did have some experience with computer programming, please describe that experience ... was it a class, a code camp, etc? Was it
self-taught? What sort of program did you create? (a game, an animation, and interactive experience, a computation?). What language(s)
did you use (for example Java)?

I learned C++ by myself. The programs [created were console programs. Most

of them did calculations. Some of them printed things in a screen. [used

complex loops and functions. I learned about classes but never used them. I

made a tictactoe game where the user has to input the position of their letter

by typing it. I gave the program an anti-error loop; if the user inputs an

unacceptable number, the program doesn't crash.

I took AP Computer Science my senior year of High School, where I learned
Java. Also, over the summer I have begun to familiarize myself with Unity and
C=.

I learned Java and Python via MOOC. Currently I'm trying to create plugins for
Minecraft.

Java

I studied Java for all four years of high school and made a couple of basic
games like Space Invaders and Brick Breaker as side projects by myself. 1
taught myself basics of Python and some Swift

I have been programing in C++ for around 4 years. I have done some Java
programing to prepare for AP Computer Science. [also taken some courses on
HTML and CSS. I am familiar on a pretty basic level with Python.

I have studied Computer Science at School as my 5th subject in my High
School. I have studied C++ including arrays, loops, lists etc. The programs
created by me hosts calculators, data management software, sorting, searching
etc.

I learned Java, C, and python for 1 month each in the camp.

Server maintenance in an existing system using Java and SQL. App creation for
Amazon Alexa in Mode.js

I studied IB Diploma Computer Science, in which I studied Java and focused on
producing database programs.

Code camp, game, java

15

Students' Hopes/Motivations

(optional) What do you hope to get out of
taking this EFS course?

I'm hoping I could tell for sure if CS is the best major for me. I did get a lot of
satisfaction from making programs that ran successfully but it was also very
frustrating at times. I want to be able to determine if the CS path is best suited
for my mental capabilities.

To get a better idea for how people think when trying to make and develop
games.

Collaboration skills. Looking at different aspeacts of a problem and learning how
to approach effectively.

To be fluent in python and learn how to solve real world problems.

I hope this course will ehlp me further my {probably fairly
rudimentary Jknowledge of computer science.

I hope to be confident in my Python skills.

I have always been interested in learning more about computers ,so by
attending this EFS Course I will be able to learn one more type of computer
language which is Python. I am also very keen in playing video games from my
childhood and have always had a will to help how these amazing things work so
effortlessly.

Capability to make a program or game
Game design skills and basic python skills

I wish to learn more about coding in python and better structuring development
projects.

solid basis for coding and making games
(optional reasons for taking this EFS course)

Get more insightful understanding of programming, and meet friends who have
mutual interest.

& deeper understanding of object oriented programming

Summary of Students' Hopes

* Improve Python skills

* Feel for CS as a possible major

» Learn the thinking of game designers
» Collaboration skills

* Meet friends with similar interests

* Learn to solve real-world problems

Classical Theory of Problem Solving

* A key course component
 Origins of the theory: early A.l.
* Essential terms in the theory

* Problem-space diagram

The Classical Theory of Problem Solving

« Began with the General Problem Solver (GPS) G.W.
Ernst, Alan Newell & Herbert Simon.

« GPS worked by successively applying operators to try to
reduce the distance from a current state to a goal state.

The CTPS is well described
In several Al textbooks, e.g.,
«Judea Pearl: “Heuristics: Intelligent

Search Strategies for Computer
Problem Solving”

S. Russell & P. Norvig. “Artificial
Intelligence: A Modern Approach”

Newell Simon Pearl

R

20

Definition

* A problem is a triple: (0,, @, ') where g, is an
Initial state, ® is a set of operators, and I is a set of
goal states.

« Each ¢,e® has a precondition, and a state-
transformation function.

« These implicitly define X , the set of all states

reachable from o, by applying members ® zero or
more times.

initial state

other
reachable
states

goal state(s)

Outline

Introduction

A Course on Games for Problem Solving
 Problem Formulation

* Wicked Problems

« Towards Standard Formats

 Liveness in Problem Solving Environments
« Design vs Problem Solving

* Other Issues

« Peer Critiques in the Programming Lab

« Concluding Thoughts

Example: Towers of Hanol

 P= (0, ©,1)

o |

« ®:{Movel 2, Movel 3, Move2 3,
Move2 1, Move3 1, Move3 2}

* I' = {y}

Outline

Introduction

A Course on Games for Problem Solving

* Problem Formulation

 Wicked Problems

« Towards Standard Formats

 Liveness in Problem Solving Environments
« Design vs Problem Solving

* Other Issues

« Peer Critiques in the Programming Lab

« Concluding Thoughts

Formulation of Wicked Problems

* Some wicked problems
 The Rittel & Webber characteristics of

wicked problems
»

“Getting a Handle on
Wicked Problems”

* The formulation process

A Wicked Problem:

Slowing global warming

27

More Wicked Problems

» Stopping the spread of antibiotic-resistant
diseases

» Halting nuclear proliferation

* Ending homelessness in King County, WA
* Avoiding species extinction

* Providing all citizens with health care

» Colonizing Mars

Rittel-Webber Characteristics 1-5 of 10

1. There is no definitive formulation of a wicked problem
2. Wicked problems have no stopping rule

3. Solutions to wicked problems are not true-or-false, but
good-or-bad

4. There is no immediate and no ultimate test of a solution
to a wicked problem

5. Every solution to a wicked problem is a “one-shot
operation”; because there is no opportunity to learn by
trial-and-error, every attempt counts significantly

29

Rittel-Webber Characteristics 6-10 of 10

6. Wicked problems do not have an enumerable (or an
exhaustively describable) set of potential solutions, nor is
there a well-described set of permissible operations that
may be incorporated into the plan

/. Every wicked problem is essentially unique

8. Every wicked problem can be considered to be a
symptom of another problem

9. The existence of a discrepancy representing a wicked
problem can be explained in numerous ways. The choice
of explanation determines the nature of the problem's
resolution

10. The planner has no right to be wrong

30

The Formulation Process

adapted from:

"Learning to Solve Complex
Scientific Problems”

edited by David Jonassen

Learning fo Solve
Complex Scientific Problems

31

Steps in Problem Formulation

« Describing a need

* Identifying resources

« Restriction and simplification

* Designing a state representation
« Designing a set of operators
 Listing constraints and desiderata

« Specifying in code the state representation, operators,
constraints, evaluation criteria, and goal criterion.

« Specifying in code a state visualization method.

 If appropriate, providing for multiple roles within teams of
solvers.

Steps in Problem Formulation

(Preformulation)

Describing a need
|dentifying resources

« Restriction and simplification

* Designing a state representation
« Designing a set of operators
 Listing constraints and desiderata

« Specifying in code the state representation, operators,
constraints, evaluation criteria, and goal criterion.

« Specifying in code a state visualization method.

 If appropriate, providing for multiple roles within teams of
solvers.

Steps in Problem Formulation

Describing a need :
|dentifying resources (Preformulatlon)
- /Restriction and simplification) _
- | Designing a state representation (POSIng)
| Designing a set of operators
- \Listing constraints and desiderata /

Specifying in code the state representation, operators,
constraints, evaluation criteria, and goal criterion.

Specifying in code a state visualization method.

If appropriate, providing for multiple roles within teams of
solvers.

Steps in Problem Formulation

Describing a need
|dentifying resources
Restriction and simplification _
Designing a state representation (POSIng)
Designing a set of operators

Listing constraints and desiderata

. @pecifying In code the state representation, operators, \
constraints, evaluation criteria, and goal criterion.

| Specifying in code a state visualization method.
« | If appropriate, providing for multiple roles within teams of

\solvers. , | o
(Coding the formulation

(Preformulation)

Outline

 Introduction

A Course on Games for Problem Solving

* Problem Formulation

* Wicked Problems

 Towards Standard Formats

 Liveness in Problem Solving Environments
« Design vs Problem Solving

* Other Issues

« Peer Critiques in the Programming Lab

« Concluding Thoughts

Why Common Problem
Formats?

Problem formulations can share libraries, esp. for
state visualization.

Solving infrastructure and game engines can be
shared among problems.

— Breadth-First & Heuristic Search implementations.

— Autoplayers,

— General player interfaces.

Debugging and testing tools can also be shared:

operator validation, problem-state class unit
tests.

Formulation File Excerpt

" **"TowersOfHanoi .py
A QUIET2 Solving Tool problem formulation.
QUIET = Quetzal User Intelligence Enhancing Technology.

#<METADATA>

QUIET _VERSION = "0.2"

PROBLEM_NAME = "Towers of Hanoi"'

PROBLEM_VERSION = *"0.2"

PROBLEM_AUTHORS = [*S. Tanimoto~]

PROBLEM_CREATION_DATE = "11-0CT-2017"

PROBLEM_DESC=\

""*"This formulation of the Towers of Hanoi problem uses generic
Python 3 constructs and has been tested with Python 3.6.

It 1s designed to work according to the QUIET2 tools interface.

#</METADATA>

Formulation File Excerpt (cont.)

#<COMMON_CODE>
class State:
def __init_ (self, d):
self.d = d

def eq_ (self,s2):
for p In ["pegl”, "peg2”, "peg3”]:

1T self.d[p] '= s2.d[p]: return False
return True

def _ hash__ (self):
return (self. str_ (). hash O

def copy(self):

Performs an appropriately deep copy of a state,

for use by operators In creating new states.

news = State({})

for peg In ["pegl”, "peg2", "peg3"]:
news.d[peg]=self.d[peg][:]

return news

Formulation File Excerpt (cont.)

def can_move(self,From,To):

"""Tests whether 1t"s legal to move a disk In state s
from the From peg to the To peg."""
try:
pf=self.d[From] # peg disk goes from
pt=self.d[To] # peg disk goes to
iIf pf==[]: return False # no disk to move.
df=pf[-1] # get topmost disk at From peg..
iIf pt==[]: return True # no disk to worry about at To peg.
dt=pt[-1] # get topmost disk at To peg.
If df<dt: return True # Disk 1s smaller than one 1t goes on.
return False # Disk too big for one i1t goes on.
except (Exception) as e:
print(e)

Formulation File Excerpt (cont.)

def goal test(s):
"""ITf the first two pegs are empty, then s is a goal state."""
return s.d["pegl”"]==[] and s.d["peg2"]==[]

Formulation File Excerpt (cont.)

#<INITIAL _STATE>
INITIAL_DICT = \

{"pegl”: list(range(N_disks,0,-1)), "peg2”:[1, "peg3":[] }
CREATE_INITIAL_STATE = lambda: State(INITIAL DICT)
#DUMMY_STATE = {"pegl":[1., "peg2°:[1, "peg3":[] }
#</INITIAL_STATE>

def goal test(s):
"""ITf the first two pegs are empty, then s is a goal state."""
return s.d["pegl”]==[] and s.d["peg2"]==[]

Formulation File Excerpt (cont.)

#<OPERATORS>
peg _combinations = [("peg"+str(a), "peg”"+str(b)) for (a,b) in
[(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)11
OPERATORS = [Operator(''Move disk from "+p+'" to ''+q,
lambda s,pl=p,ql=q: s.can_move(pl,ql),

The default value construct is needed
here to capture the values of p&q separately
1n each 1teration of the list comp. i1teration.

lambda s,pl=p,ql=q: s.move(pl,ql))
for (p,q) i1in peg _combinations]
#</0OPERATORS>

Outline

Introduction

A Course on Games for Problem Solving
Problem Formulation

Wicked Problems

Towards Standard Formats

Liveness in Problem Solving Environments
Design vs Problem Solving

Other Issues

Peer Critiques in the Programming Lab
Concluding Thoughts

44

Live Solving

* A process in which a human solver
manipulates the state of a problem quickly
with the help of a computer.

* There could also be a performance
component of the experience, not unlike
live coding to produce music.

Live Solving Towers of Hanoi

Live Solving Missionaries
and Cannibals

Why Live Solving?

* Reinforces understanding of the theory
» Shows all problems are like mazes

» Supports discussion of a problem's
characteristics

» Can transform any well-formulated problem
into a puzzle-like experience.

Outline

 Introduction

A Course on Games for Problem Solving

* Problem Formulation

* Wicked Problems

« Towards Standard Formats

 Liveness in Problem Solving Environments
* Design vs Problem Solving

* Other Issues

« Peer Critiques in the Programming Lab

« Concluding Thoughts

A Continuum of Problem Types*

TOH Design Poetry

TOH: complete agreement on solution
Design: reasonably wide agreement
Poetry: somewhat less agreement

*Scott Klemmer, personal communication.

H. Simon, in the Sciences of the Artificial, makes the case that the
classical theory of problem solving is applicable to nearly the full
spectrum of human creative endeavors.

Design as Problem Solving

 Consider Recursive Mondrianization:
* Mondri anization
e Mon dri an 1| zation

Design as Problem Solving

 Consider Recursive Mondrianization:
* Mondri anization
e Mon dri an 1| zation

| Divide with horizontal line at fraction 0.25 v
Divide with horizontal line at fraction 0.25
Divide with horizontal line at fraction 0.3333
Divide with horizontal line at fraction 0.5
Divide with horizontal line at fraction 0.6667
Divide with horizontal line at fraction 0.75
Divide with vertical line at fraction 0.25
Divide with vertical line at fraction 0.3333
Divide with vertical line at fraction 0.5
Divide with vertical line at fraction 0.6667
Divide with vertical line at fraction 0.75

Select next box for alteration
Select previous box for alteration
Recolor the selected box to white

Recolor the selected box to red
Recolor the selected box to blue
Recolor the selected box to yellow

Poetry as Recursive Selection

<haiku>

Poetry as Recursive Selection

Poetry as Recursive Selection

=season-indicator= -> september
=season-indicator= -= october

=season-indicator= -= november
=season-indicator= -= december
=season-indicator= -= frosty

=geason-indicator= -= sweltering
=geason-indicator= -= leaves falling
=geason-indicator= -= snowflake

=quantifier= -= the

=quantifier= -= many a

=quantifier= -= one

=gpening= -= <season-indicator= =color= <water=
=0pening= -= <air= of <season-indicator=
=middle= -= =movement= <direction= =quantifier= =earth=
=middle= -= from =earth= <movement= =direction=
=middle> -= =direction= =color= <earth= <movement=
=gnding= -= <intensifier= =sound=

=gnding= -= =sound= and =sound=

=nl= == [ML]

=haiku= -= =opening= [NL] <middle= [NL] <ending=
=haiku= -= =gpening= [NL] =middle= [ML] =ending=

Poetry as Recursive Selection

October brown brook
From pasture tumbles downbhill
Remarkable Crash

Outline

Introduction

A Course on Games for Problem Solving

* Problem Formulation

* Wicked Problems

« Towards Standard Formats

 Liveness in Problem Solving Environments
« Design vs Problem Solving

* Other Issues

« Peer Critiques in the Programming Lab

« Concluding Thoughts

Other Issues

» Tkinter vs. Web Programming
— CSE 190C vs CSE 190D

* Meta design: Game Design as a Problem

— When a game embeds a problem formulation, designing
the game is solving a metaproblem.

Outline

Introduction

A Course on Games for Problem Solving
Problem Formulation

Wicked Problems

Towards Standard Formats

Liveness in Problem Solving Environments
Design vs Problem Solving

Other Issues

Peer Critiques in the Programming Lab
Concluding Thoughts

60

Flow Diagram for Peer Evals.

o 4%e

‘0
T 1>
@

Peer Evaluation Schedule

* Milestone A: Initial oral presentation of
ideas; oral questions and comments

* Milestone B: Short formative written peer
reviews (using a 1/2 page form ...)

* Milestone C: no peer feedback

* Milestone D: More formal 2-page peer
evaluations of semi-final games ...

* Milestone E: Summative peer ratings on
multiple scales

Milestone B review form

Review by: Game Title:
Group: (circle 1): INFO, MENTAL, HEALTH, CLIMATE, VIOLENCE, BIO.
Initial State: Suggestions for additional state variables or for removing variables.

State visualization: What graphical rep. of states might add to what’s here?

Are the operators clear? Are they sufficient? Do they work?

What might be a couple of additional operators that would add something new or
cool to the game?

What scoring or progress indicators are there and how could they be made more
compelling?

Other suggestions?

Milestone D peer review questions

Review by: Game Title:

1. Clarity of Goal or Objective: Suggestions for how to make it clearer what the goal of the game is.
2. State visualization: How clear is the state visualization? Should any textual explanation be added?
3. Are the operators clear? Are they sufficient? Do they work?

4. Credibility of the Model: Is the underlying model rich enough to be a credible basis for this game? How
many state variables are there, and to the operators really relate to them in the real-world wicked problem?
If not, what would be a reasonable storyline for why the fictional operators or variables are OK for the game?
(E.g., the focus is on other variables or some other important aspect of the player’'s understanding of the
problem.)

5. Time frame: If this game uses a simulation of a process over time, is the time frame clearly presented?
Is it credible? (Could the effect of the operators actually manifest themselves over the short(?) period
represented by a turn or simulation step? If not, what should the game designers do?

6. What might be a couple of additional operators that would add something new or cool to the game?

7. Expected level of engagement: If you were playing this game, how engaged would you feel? What can
the designers do to increase your feeling of engagement?

8. What scoring or progress indicators are there and how could they be made more compelling?

9. What would you be learning about the wicked problem when you play this game? What more would you
WANT to be learning, but are not? What could the game designers do about that?

10. Other suggestions?

Sample Response to Feedback

* (separate document).

* The Final Project Reports largely consist of
explanations of how the team responded to
the suggestions of the class in the
Milestone D peer reviews.

Parallels to Writers' Workshops

» Critigues may be more thorough when a
highly structured process is followed.

* Peers see each work from the perspective
of someone in a similar role.

* Rules related to critiquing the work rather
than the authors are not needed, because
the review form focuses on the work.

-~ UTOoPIA THEORY -

il

[
. =
)
It N -
| L
. I"..
3
.
-
I +
——— | L]

“Yeah, | s=& him too_But nobody wanls to talk abouwt it!”

67

®©nakedpastor

68

Outline

Introduction

A Course on Games for Problem Solving

* Problem Formulation

* Wicked Problems

« Towards Standard Formats

 Liveness in Problem Solving Environments
« Design vs Problem Solving

* Other Issues

« Peer Critiques in the Programming Lab

e Concluding Thoughts

Concluding Thoughts

 Observations ...
* Beliefs ...
e Future Work ...

Observations

« Students are learning programming in a diversity of
contexts (from the background questionnaire).

* The classroom context provides a social context for
programming, with some similarities to a corporate
context.

« Agile methodology needed some adaptation for use
In short, introductory programming contexts. (shorter,
less formal sprints; whole class as project owner).

Beliefs

 Programming as a means to an end (game creation)
can help smooth over this variability in student
programming backgrounds.

 Live solving offers a reconceptualization of what it
means to solve, but reinforces an understanding of
the classical theory.

Future Work

* Preparation for a 2nd EFS offering:
— Make a more complete set of readings.
— Offer more software tools for game testing and evaluation:
— Autoplayer, State-space Analyzer, Generic Livesolver
— ldentify a good online peer-review/rating support tool that
can aggregate ratings and keep constructive comments
organized (by reviewer and by issue or feature).
* Preparation for an advanced course
— Integrate into the CSE curriculum as a senior capstone
design course.
— Organize a set of tools to better support design of
collaborative games that work on the web.

* Possible book on how to formulate wicked problems
for human/computer solving.

Acknowledgments

Collaborators: Sandra Fan, Brian Johnson & Tyler Robison

CoSolve developers: Rob Thompson, Laura Dong, Chris
Brenan, Yizhou Wang, Christopher Clark

Game design study: Rolfe Schmidt, Yun-En Liu, Tyler Robison,
Sandra Fan, Brian Johnson

Problem Template creators:

Jordan Atwood, Charliz Burks, Cezanne Camacho, Michael Duong, Katherine
Hulsman, Galen Knapp, Richard Rice, Yifan Zhang

National Science Foundation under grant 0613550

74

Thank you

