
1

Shaping the Programming
Experiences of Students:

Reflections on a Course on Game
Design for Problem Solving

Steven L. Tanimoto
University of Washington
Paul G. Allen School of Computer Science and Engineering

2

Outline
• Introduction
• A Course on Games for Problem Solving
• Problem Formulation
• Wicked Problems
• Towards Standard Formats
• Liveness in Problem Solving Environments
• Design vs Problem Solving
• Other Issues
• Peer Critiques in the Programming Lab
• Concluding Thoughts

3

Outline
• Introduction
• A Course on Games for Problem Solving
• Problem Formulation
• Wicked Problems
• Towards Standard Formats
• Liveness in Problem Solving Environments
• Design vs Problem Solving
• Other Issues
• Peer Critiques in the Programming Lab
• Concluding Thoughts

4

Instructor's Objectives
• Clarify an interdisciplinary approach to problem

solving.
• Build on past work:

– Collaborative Design (2009, 2010, with T. Robison, B.
Johnson, and others)

– CoSolve (with Sandra Fan et al. 2012).
– Problem Formulation (with Rob Thompson, unpublished)

• Refine software that codifies a promising approach
to formulating and solving problems.

• Engage students in learning important content.

5

The Course

• First offering: Spring 2017 ("the spring offering")
• Second offering: Summer 2017 ("the EFS offering")

– The U.W. Early Fall Start program
– Course flyer
– Calendar
– Student population and backgrounds
– Classical Theory of Problem Solving

Shaping Student Experiences
• Students already have varied backgrounds in

computer programming.
• Now we do programming “in context.” (serving a

separate end than just fluency: game creation).
• Helps level the playing field, de-emphasizing the

primacy of coding fluency.
• Offer new experiences to all…
• Agile, Scrum, Iterative design, User-centered

design
• New libraries and coding frameworks.

6

7

Outline
• Introduction
• A Course on Games for Problem Solving
• Problem Formulation
• Wicked Problems
• Towards Standard Formats
• Liveness in Problem Solving Environments
• Design vs Problem Solving
• Other Issues
• Peer Critiques in the Programming Lab
• Concluding Thoughts

8

The Early Fall Start Program at U.W.

9

EFS Program (cont.)

10

11

12

Python

Problem
solving

theory &
formulation

Game
design and

theory

Software
engineering

Student Population

• 25 incoming freshmen
• 5 female, 20 male
• 16 international students (from China,

India, Japan, Korea, Lebanon, Singapore)
• 9 domestic (US)

13

Prior Programming Experience

Amount of Experience Number (and
percentage)

None 3 (12%)
Up to about 1 month 6 (24%)
1 to 6 months 3 (12%)
More than 6 months 13 (52%)

14

Diversity of Programming Exp.

15

Students' Hopes/Motivations

(optional) What do you hope to get out of
taking this EFS course? ...

16

17

Summary of Students' Hopes

• Improve Python skills
• Feel for CS as a possible major
• Learn the thinking of game designers
• Collaboration skills
• Meet friends with similar interests
• Learn to solve real-world problems

18

Classical Theory of Problem Solving

• A key course component
• Origins of the theory: early A.I.
• Essential terms in the theory
• Problem-space diagram

19

20

The Classical Theory of Problem Solving

• Began with the General Problem Solver (GPS) G.W.
Ernst, Alan Newell & Herbert Simon.

• GPS worked by successively applying operators to try to
reduce the distance from a current state to a goal state.

Newell Simon Pearl

The CTPS is well described
in several AI textbooks, e.g.,
•Judea Pearl: “Heuristics: Intelligent
Search Strategies for Computer
Problem Solving”
•S. Russell & P. Norvig. “Artificial
Intelligence: A Modern Approach”

21

Definition

• A problem is a triple: (σ0,  , ) where σ0 is an
initial state,  is a set of operators, and  is a set of
goal states.

• Each φi Φ has a precondition, and a state-
transformation function.

• These implicitly define  , the set of all states
reachable from σ0 by applying members  zero or
more times.

22

• σi



• σ



σk

g

initial state

other
reachable
states

goal state(s)

. . .
State
Space

23

Outline
• Introduction
• A Course on Games for Problem Solving
• Problem Formulation
• Wicked Problems
• Towards Standard Formats
• Liveness in Problem Solving Environments
• Design vs Problem Solving
• Other Issues
• Peer Critiques in the Programming Lab
• Concluding Thoughts

24

Example: Towers of Hanoi

• P = (σ0,  , )
• σ0 :

•  : { Move1_2, Move1_3, Move2_3,
Move2_1, Move3_1, Move3_2 }

•  = {}:

25

Outline
• Introduction
• A Course on Games for Problem Solving
• Problem Formulation
• Wicked Problems
• Towards Standard Formats
• Liveness in Problem Solving Environments
• Design vs Problem Solving
• Other Issues
• Peer Critiques in the Programming Lab
• Concluding Thoughts

26

Formulation of Wicked Problems

• Some wicked problems

• The Rittel & Webber characteristics of
wicked problems

• The formulation process

“Getting a Handle on
Wicked Problems”

A Wicked Problem:
Slowing global warming

27

More Wicked Problems

• Stopping the spread of antibiotic-resistant
diseases

• Halting nuclear proliferation
• Ending homelessness in King County, WA
• Avoiding species extinction
• Providing all citizens with health care
• Colonizing Mars

28

Rittel-Webber Characteristics 1-5 of 10

1. There is no definitive formulation of a wicked problem
2. Wicked problems have no stopping rule
3. Solutions to wicked problems are not true-or-false, but

good-or-bad
4. There is no immediate and no ultimate test of a solution

to a wicked problem
5. Every solution to a wicked problem is a “one-shot

operation”; because there is no opportunity to learn by
trial-and-error, every attempt counts significantly

29

Rittel-Webber Characteristics 6-10 of 10

6. Wicked problems do not have an enumerable (or an
exhaustively describable) set of potential solutions, nor is
there a well-described set of permissible operations that
may be incorporated into the plan

7. Every wicked problem is essentially unique
8. Every wicked problem can be considered to be a

symptom of another problem
9. The existence of a discrepancy representing a wicked

problem can be explained in numerous ways. The choice
of explanation determines the nature of the problem's
resolution

10. The planner has no right to be wrong
30

The Formulation Process
adapted from:
"Learning to Solve Complex
Scientific Problems"

edited by David Jonassen

31

Steps in Problem Formulation
• Describing a need
• Identifying resources
• Restriction and simplification
• Designing a state representation
• Designing a set of operators
• Listing constraints and desiderata
• Specifying in code the state representation, operators,

constraints, evaluation criteria, and goal criterion.
• Specifying in code a state visualization method.
• If appropriate, providing for multiple roles within teams of

solvers.

32

Steps in Problem Formulation
• Describing a need
• Identifying resources
• Restriction and simplification
• Designing a state representation
• Designing a set of operators
• Listing constraints and desiderata
• Specifying in code the state representation, operators,

constraints, evaluation criteria, and goal criterion.
• Specifying in code a state visualization method.
• If appropriate, providing for multiple roles within teams of

solvers.

33

(Preformulation)

Steps in Problem Formulation
• Describing a need
• Identifying resources
• Restriction and simplification
• Designing a state representation
• Designing a set of operators
• Listing constraints and desiderata
• Specifying in code the state representation, operators,

constraints, evaluation criteria, and goal criterion.
• Specifying in code a state visualization method.
• If appropriate, providing for multiple roles within teams of

solvers.

34

(Preformulation)

(Posing)

Steps in Problem Formulation
• Describing a need
• Identifying resources
• Restriction and simplification
• Designing a state representation
• Designing a set of operators
• Listing constraints and desiderata
• Specifying in code the state representation, operators,

constraints, evaluation criteria, and goal criterion.
• Specifying in code a state visualization method.
• If appropriate, providing for multiple roles within teams of

solvers.

35

(Preformulation)

(Posing)

(Coding the formulation)

36

Outline
• Introduction
• A Course on Games for Problem Solving
• Problem Formulation
• Wicked Problems
• Towards Standard Formats
• Liveness in Problem Solving Environments
• Design vs Problem Solving
• Other Issues
• Peer Critiques in the Programming Lab
• Concluding Thoughts

Why Common Problem
Formats?
• Problem formulations can share libraries, esp. for

state visualization.
• Solving infrastructure and game engines can be

shared among problems.
– Breadth-First & Heuristic Search implementations.
– Autoplayers,
– General player interfaces.

• Debugging and testing tools can also be shared:
operator validation, problem-state class unit
tests.

37

Formulation File Excerpt

38

'''TowersOfHanoi.py
A QUIET2 Solving Tool problem formulation.
QUIET = Quetzal User Intelligence Enhancing Technology.
'''

#<METADATA>
QUIET_VERSION = "0.2"
PROBLEM_NAME = "Towers of Hanoi"
PROBLEM_VERSION = "0.2"
PROBLEM_AUTHORS = ['S. Tanimoto']
PROBLEM_CREATION_DATE = "11-OCT-2017"
PROBLEM_DESC=\
'''This formulation of the Towers of Hanoi problem uses generic
Python 3 constructs and has been tested with Python 3.6.
It is designed to work according to the QUIET2 tools interface.
'''
#</METADATA>

Formulation File Excerpt (cont.)

39

#<COMMON_CODE>
class State:
def __init__(self, d):
self.d = d

def __eq__(self,s2):
for p in ['peg1','peg2','peg3']:
if self.d[p] != s2.d[p]: return False

return True

def __hash__(self):
return (self.__str__()).__hash__()

def copy(self):
Performs an appropriately deep copy of a state,
for use by operators in creating new states.
news = State({})
for peg in ['peg1', 'peg2', 'peg3']:
news.d[peg]=self.d[peg][:]

return news

Formulation File Excerpt (cont.)

40

def can_move(self,From,To):
'''Tests whether it's legal to move a disk in state s

from the From peg to the To peg.'''
try:
pf=self.d[From] # peg disk goes from
pt=self.d[To] # peg disk goes to
if pf==[]: return False # no disk to move.
df=pf[-1] # get topmost disk at From peg..
if pt==[]: return True # no disk to worry about at To peg.
dt=pt[-1] # get topmost disk at To peg.
if df<dt: return True # Disk is smaller than one it goes on.
return False # Disk too big for one it goes on.

except (Exception) as e:
print(e)

Formulation File Excerpt (cont.)

41

def goal_test(s):
'''If the first two pegs are empty, then s is a goal state.'''
return s.d['peg1']==[] and s.d['peg2']==[]

Formulation File Excerpt (cont.)

42

#<INITIAL_STATE>
INITIAL_DICT = \

{'peg1': list(range(N_disks,0,-1)), 'peg2':[], 'peg3':[] }
CREATE_INITIAL_STATE = lambda: State(INITIAL_DICT)
#DUMMY_STATE = {'peg1':[], 'peg2':[], 'peg3':[] }
#</INITIAL_STATE>

def goal_test(s):
'''If the first two pegs are empty, then s is a goal state.'''
return s.d['peg1']==[] and s.d['peg2']==[]

Formulation File Excerpt (cont.)

43

#<OPERATORS>
peg_combinations = [('peg'+str(a),'peg'+str(b)) for (a,b) in

[(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)]]
OPERATORS = [Operator("Move disk from "+p+" to "+q,

lambda s,p1=p,q1=q: s.can_move(p1,q1),

The default value construct is needed
here to capture the values of p&q separately
in each iteration of the list comp. iteration.

lambda s,p1=p,q1=q: s.move(p1,q1))
for (p,q) in peg_combinations]

#</OPERATORS>

44

Outline
• Introduction
• A Course on Games for Problem Solving
• Problem Formulation
• Wicked Problems
• Towards Standard Formats
• Liveness in Problem Solving Environments
• Design vs Problem Solving
• Other Issues
• Peer Critiques in the Programming Lab
• Concluding Thoughts

Live Solving

• A process in which a human solver
manipulates the state of a problem quickly
with the help of a computer.

• There could also be a performance
component of the experience, not unlike
live coding to produce music.

45

Live Solving Towers of Hanoi

46

Live Solving Missionaries
and Cannibals

47

Why Live Solving?

• Reinforces understanding of the theory
• Shows all problems are like mazes
• Supports discussion of a problem's

characteristics
• Can transform any well-formulated problem

into a puzzle-like experience.

48

49

Outline
• Introduction
• A Course on Games for Problem Solving
• Problem Formulation
• Wicked Problems
• Towards Standard Formats
• Liveness in Problem Solving Environments
• Design vs Problem Solving
• Other Issues
• Peer Critiques in the Programming Lab
• Concluding Thoughts

A Continuum of Problem Types*

TOH Design Poetry

TOH: complete agreement on solution
Design: reasonably wide agreement
Poetry: somewhat less agreement

*Scott Klemmer, personal communication.
H. Simon, in the Sciences of the Artificial, makes the case that the
classical theory of problem solving is applicable to nearly the full
spectrum of human creative endeavors.

50

Design as Problem Solving

• Consider Recursive Mondrianization:
• Mondri anization
• Mon dri an i za tion

51

Design as Problem Solving

• Consider Recursive Mondrianization:
• Mondri anization
• Mon dri an i za tion

52

53

Poetry as Recursive Selection

54

Poetry as Recursive Selection

55

Poetry as Recursive Selection

56

Poetry as Recursive Selection

57

October brown brook
From pasture tumbles downhill

Remarkable Crash

58

Outline
• Introduction
• A Course on Games for Problem Solving
• Problem Formulation
• Wicked Problems
• Towards Standard Formats
• Liveness in Problem Solving Environments
• Design vs Problem Solving
• Other Issues
• Peer Critiques in the Programming Lab
• Concluding Thoughts

59

Other Issues

• Tkinter vs. Web Programming
– CSE 190C vs CSE 190D

• Meta design: Game Design as a Problem
– When a game embeds a problem formulation, designing

the game is solving a metaproblem.

60

Outline
• Introduction
• A Course on Games for Problem Solving
• Problem Formulation
• Wicked Problems
• Towards Standard Formats
• Liveness in Problem Solving Environments
• Design vs Problem Solving
• Other Issues
• Peer Critiques in the Programming Lab
• Concluding Thoughts

Flow Diagram for Peer Evals.

61

Scrum
Ambassado

r

Other team
member

Peer Evaluation Schedule

• Milestone A: Initial oral presentation of
ideas; oral questions and comments

• Milestone B: Short formative written peer
reviews (using a 1/2 page form ...)

• Milestone C: no peer feedback
• Milestone D: More formal 2-page peer

evaluations of semi-final games ...
• Milestone E: Summative peer ratings on

multiple scales
62

Milestone B review form
Review by: ______________________________ Game Title: ___________
Group: (circle 1): INFO, MENTAL, HEALTH, CLIMATE, VIOLENCE, BIO.
Initial State: Suggestions for additional state variables or for removing variables.

State visualization: What graphical rep. of states might add to what’s here?

Are the operators clear? Are they sufficient? Do they work?

What might be a couple of additional operators that would add something new or
cool to the game?

What scoring or progress indicators are there and how could they be made more
compelling?
Other suggestions?

63

Milestone D peer review questions
Review by: ______________________________ Game Title: ________________

1. Clarity of Goal or Objective: Suggestions for how to make it clearer what the goal of the game is.

2. State visualization: How clear is the state visualization? Should any textual explanation be added?

3. Are the operators clear? Are they sufficient? Do they work?

4. Credibility of the Model: Is the underlying model rich enough to be a credible basis for this game? How
many state variables are there, and to the operators really relate to them in the real-world wicked problem?
If not, what would be a reasonable storyline for why the fictional operators or variables are OK for the game?
(E.g., the focus is on other variables or some other important aspect of the player’s understanding of the
problem.)

5. Time frame: If this game uses a simulation of a process over time, is the time frame clearly presented?
Is it credible? (Could the effect of the operators actually manifest themselves over the short(?) period
represented by a turn or simulation step? If not, what should the game designers do?

6. What might be a couple of additional operators that would add something new or cool to the game?

7. Expected level of engagement: If you were playing this game, how engaged would you feel? What can
the designers do to increase your feeling of engagement?

8. What scoring or progress indicators are there and how could they be made more compelling?

9. What would you be learning about the wicked problem when you play this game? What more would you
WANT to be learning, but are not? What could the game designers do about that?

10. Other suggestions?
64

Sample Response to Feedback

• (separate document).

• The Final Project Reports largely consist of
explanations of how the team responded to
the suggestions of the class in the
Milestone D peer reviews.

65

Parallels to Writers' Workshops

• Critiques may be more thorough when a
highly structured process is followed.

• Peers see each work from the perspective
of someone in a similar role.

• Rules related to critiquing the work rather
than the authors are not needed, because
the review form focuses on the work.

66

67

68

69

Outline
• Introduction
• A Course on Games for Problem Solving
• Problem Formulation
• Wicked Problems
• Towards Standard Formats
• Liveness in Problem Solving Environments
• Design vs Problem Solving
• Other Issues
• Peer Critiques in the Programming Lab
• Concluding Thoughts

70

Concluding Thoughts

• Observations ...

• Beliefs ...

• Future Work ...

71

Observations
• Students are learning programming in a diversity of

contexts (from the background questionnaire).
• The classroom context provides a social context for

programming, with some similarities to a corporate
context.

• Agile methodology needed some adaptation for use
in short, introductory programming contexts. (shorter,
less formal sprints; whole class as project owner).

72

Beliefs
• Programming as a means to an end (game creation)

can help smooth over this variability in student
programming backgrounds.

• Live solving offers a reconceptualization of what it
means to solve, but reinforces an understanding of
the classical theory.

73

Future Work
• Preparation for a 2nd EFS offering:

– Make a more complete set of readings.
– Offer more software tools for game testing and evaluation:
– Autoplayer, State-space Analyzer, Generic Livesolver
– Identify a good online peer-review/rating support tool that

can aggregate ratings and keep constructive comments
organized (by reviewer and by issue or feature).

• Preparation for an advanced course
– Integrate into the CSE curriculum as a senior capstone

design course.
– Organize a set of tools to better support design of

collaborative games that work on the web.
• Possible book on how to formulate wicked problems

for human/computer solving.

74

Acknowledgments
 Collaborators: Sandra Fan, Brian Johnson & Tyler Robison

 CoSolve developers: Rob Thompson, Laura Dong, Chris
Brenan, Yizhou Wang, Christopher Clark

 Game design study: Rolfe Schmidt, Yun-En Liu, Tyler Robison,
Sandra Fan, Brian Johnson

 Problem Template creators:
Jordan Atwood, Charliz Burks, Cezanne Camacho, Michael Duong, Katherine
Hulsman, Galen Knapp, Richard Rice, Yifan Zhang

 National Science Foundation under grant 0613550

75

Thank you

